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ABSTRACT

An inverse heat conduction problem is solved
to estimate the space-wise and time-wise vary-
ing heat transfer coe±cient for a turbulent
round jet impinging onto a con¯ned circular
°at plate. Two distinct regions are observed:
the impingement region and the wall-jet re-
gion. The estimation, based on transient wall
temperature measurements, captures the ra-
dial and time-wise variation of the heat trans-
fer coe±cient between the cold impinging jet
and the heated circular °at plate. The direct
problem is solved through a ¯nite di®erence
method. The inverse heat conduction problem
of function estimation is solved by the conju-
gate gradient method with an adjoint equation.

NOMENCLATURE

h heat transfer coe±cient
k thermal conductivity
qw surface heat °ux
R radius of the plate
T temperature
t time
r radial coordinate
z longitudinal coordinate
J squared residue functional
P direction of descent
Y measured temperature
¸ adjoint function
¾ thermal di®usivity
° conjugate coe±cient
® thermal di®usivity
¯ step size in conjugate grad. meth.
Superscripts
n level in time discretization
n + 1 intermediate level in time discret.
Subscripts
0 initial condition
av averaged variable
f ¯nal

INTRODUCTION

Inverse heat transfer problems have been
investigated extensively in recent years with a
view to important applications. These applica-
tions, very often involve the estimation of ther-
mophysical properties of solids, of unknown
boundary or initial conditions, of geometrical
con¯gurations and of heat source strength [1-
6]. As a result, many numerical and analytical
techniques have been developed speci¯cally for
the solution of inverse heat conduction prob-
lems. Typical representatives are the function
specī cation method, the Tikhonov regulari-
sation method, the mollī cation method, and
the Alifanov's iterative regularisation method.
In general, these methods of solution reduce
their formulations to minimization problems
sub jected to some stabilization technique. The
conjugate gradient method, e.g., is a typical
powerful minimization technique, which can be
applied to function estimation together with a
suitable stopping criterion to obtain stable so-
lutions for the inverse problem.

Most inverse boundary problems in heat
conduction are concerned with the estimation
of boundary heat °ux. The estimation of time
varying heat transfer coe±cient, on the other
hand, has received less attention.

The problem of particular interest in this
work is to solve an inverse heat conduction
problem for the estimation of the space-wise
and time-wise varying heat transfer coe±cient
of a turbulent round jet impinging onto a cir-
cular °at plate. The heat transfer coe±cient is
determined from simulated temperature data
on the top of the surface.

The inverse heat conduction problem for
the estimation of time varying heat transfer
coe±cients is solved by applying Alifanov's
iterative regularisation method. In this ap-
proach, an optimisation problem is solved in
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which a squared residue functional is min-
imised through the conjugate gradient method.
A sensitivity problem is solved to determine
the step size in the direction of descent and an
adjoint problem is solved to determine the gra-
dient of the functional. No prior information is
used on the functional form of the heat transfer
coe±cient variation with time.

A SHORT REVIEW ON THE IMPING-
ING JET PROBLEM

After some general statements on imping-
ing jets, we will close this section by estab-
lishing a connection between the results to be
developed in this work and their importance in
view of the developments of other authors.

A cold turbulent jet impinging normally
onto a heated surface is a very e®ective means
to promote high rates of heat exchange. Thus,
this geometrical arrangement has been exten-
sively used in industrial processes that aim
to achieve intensive heating, cooling or drying
rates. Typical applications are the tempering
and shaping of glass, the annealing of plastic
and metal sheets, the drying of textile and pa-
per products, and the cooling of electronics in-
struments. Due to the many applications and
to the high complexity of the °ow structure
resulting from an impinging jet, many recent
works have been conducted to understand the
heat transfer characteristics.

Colucci and Viskanta [7] studied experi-
mentally the e®ects of nozzle geometry on the
local heat transfer coe±cients of con¯ned im-
pinging jets. Low nozzle-to-plate gaps were
considered in the Reynolds number range of
10,000 to 50,000. The results were compared
with similar experiments for uncon¯ned jets.
An important conclusion was that the local
heat transfer coe±cients for con¯ned jets are
more sensitive to Reynolds number and nozzle-
to-plate gaps than those for uncon¯ned jets.

The heat transfer in the °ow of a cold, two-
dimensional, vertical liquid jet against a hot,
horizontal, surface was given an approximate
solution for the velocity and temperature ¯elds
by Shu and Wilks [8]. The solution is valid for
laminar °ows and resorts to the hydrodynamic
similarity solution of Watson (see, [8]). The
results were compared with a numerical real-
ization of the °ow.

Behnia and Durbin [9] reported compu-

tations of the °ow and thermal ¯elds in an
axisymmetric isothermal fully developed tur-
bulent jet, perpendicular to a uniform heat
°ux °at plate. The V2F model was used in
the calculations and, for comparison, compu-
tations were also performed with the standard
·-² model. The V2F heat transfer predictions
are in agreement with experiments. The ·-²
model does not properly resolve the °ow fea-
tures, over-predicts the rate of heat transfer
and yields physically unrealistic behaviors.

Wang et al.[10] performed an analytical
study of the heat transfer between an axisym-
metric impinging jet and a solid surface with
non-uniform wall temperature or wall heat
°ux. The results show that the nonuniformity
of wall temperature or wall heat °ux has a con-
siderable e®ect on the stagnation point Nusselt
number. In a second study, Wang et al.[11]
investigated the heat transfer in the bound-
ary layer region. The results indicated that
the Nusselt number for increasing wall tem-
perature or wall heat °ux can be considerably
higher than that for constant wall temperature
or wall heat °ux outside the stagnation region.

Unsteady heat transfer caused by a con-
¯ned impinging jet °ow was studied using di-
rect numerical simulation by Chung and Luo
[12]. They found that the unsteady heat trans-
fer characteristics are strongly correlated with
the vortex dynamics of the jet °ow, and un-
steady separation induces a secondary max-
imum and a local minimum of the instanta-
neous heat transfer along the wall region.

Park et al.[13] have numerically investi-
gated °ow and heat transfer characteristics
of con¯ned impinging slot jets by using a
SIMPLE based segregated streamline upwind
Petrov-Galerkin ¯nite element method. Their
results for turbulent impinging jets report that
the calculated Nusselt number distribution is
in good agreement with the experimental data
for low Reynolds numbers. However, as the
Reynolds number increases, the magnitude and
position of the second peak of the Nusselt num-
ber disagree more and more with the experi-
mental data.

Thus, we have just seen from the above re-
marks, that the problem of estimating local
convection heat transfer coe±cients is central
for the impinging jet problem. However, de-
pending on the measuring technique that one is
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using, this evaluation may be di±cult to make
due to conjugate e®ects. That is where the in-
verse problem technique may come into help.
Indeed, through inverse problems the exper-
imentalist will be able to estimate the local
heat transfer coe±cients from local wall surface
temperature measurements, an easily obtained
data. The objective of this work becomes then
clearer. We strive at developing a numerical
tool capable of evaluating the heat tranfer co-
e±cient from simple wall temperature data.

MATHEMATICAL FORMULATION
OF THE DIRECT PROBLEM

Consider the transient heat conduction in
a thin, circular plate subjected to a constant
heat °ux on its bottom side and to the convec-
tive cooling of a turbulent round jet impinging
onto the top side.

The two-dimensional transient heat con-
duction equation for an homogeneous medium
with constant properties in cylindrical coordi-
nates can be written as

@T
@t

= ®
·

1
r
@
@r
¡
r
@
@r
¢

+
@2T
@z2

¸
(1)

in 0 < r < R, 0 < z < a, for t > 0.

with the following boundary conditions

(@T=@r) = 0, at r = 0, 0 < z < a, t > 0

(@T=@r) = 0, at r = R, 0 < z < a, t > 0

¡k(@T=@z) = qw , at z = 0, 0 < r < R, t > 0

¡k(@T =@z) = h(r; t)(T ¡ Tinf );

at z = a, 0 < r < R, t > 0

and the initial condition

T(r; z; 0) = T0(r; z)

in 0 < r < R, 0 < z < a, for t = 0,

where k is the thermal conductivity of the
plate, ® is the thermal di®usivity, Tinf is the
free stream temperature of the impinging jet,
a is the thickness of the plate and R its radius.

When the material properties, the initial
and boundary conditions are known, the tem-
perature distribution, T (r; z; t) can be deter-
mined. Problem (1) is then called the direct

problem. On the other hand, if any of these
conditions, or a combination of them, is un-
known, but, instead, experimentally measured
temperatures are available somewhere in the
space-time domain, an estimation of the un-
known quantities may be attempted. This is
known as the inverse heat conduction problem.

Before proceeding directly to the mathe-
matical formulation of the inverse problem, we
introduce a lumped-di®erential formulation of
the direct problem, which is reduced to an one-
dimensional transient heat conduction prob-
lem. We ¯rst introduce the spatially averaged
temperature along the z direction

Tav(r; t) =
1
a

Z a

0
T (r; z; t)dz (2)

Then, Eq.(1) is operated by (1=a)
R a

0 dz, to
yield

@Tav(r;t)
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(3)

Now, the boundary conditions to Eq. (1)
can be used to give

@Tav(r;t)
@t = ®

r
@
@r

¡
r @Tav(r;t)@r

¢

+ ®
ak

¡
¡h(r; t)(T (r; a;t)¡ Tinf ) + qw

¢
(4)

Eq.(4) is an equivalent integro-di®erential
formulation of the mathematical model,
Eq.(1), with no approximations involved.

Supposing that the temperature gradients
are su±ciently smooth over the whole spatial
solution domain, the classical lumped system
analysis (CLSA) is based on the assumption
that the boundary temperature can be reason-
ably well approximated by the average temper-
ature, as T(r; a; t) »= Tav(r; t), which leads to
the simple lumped model,

@Tav(r; t)
@t

=
®
r
@
@r
¡
r
@Tav(r; t)

@r
¢

+
®
ak
¡
¡h(r; t)(Tav (r;t)¡ Tinf ) + qw

¢
(5)

to be solved with the following boundary and
initial conditions
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(@Tav=@r) = 0, at r = 0, t > 0

(@Tav=@r) = 0, at r = R, t > 0

Tav(r; 0) = Tav0(r)

in 0 < r < R, for t = 0,

MATHEMATICAL FORMULATION
OF THE INVERSE PROBLEM

The purpose of the inverse problem formu-
lation is to estimate the unknown time varying
heat transfer coe±cient for an impinging tur-
bulent round jet from temperature measure-
ments taken on the top surface of a heated
plate. To this end, we will use Alifanov's it-
erative regularisation method, also known as
the conjugate gradient method with an adjoint
equation (Su and Silva Neto [12]).

The conjugate gradient method was imple-
mented with an adjoint equation through the
following steps: (i) the sensitivity problem, (ii)
the adjoint problem and the gradient equation,
(iii) the conjugate gradient method of minimi-
sation and (iv) the stopping criterion.

Here, we will provide a brief description of
each step, and, then, wil present the solution
algorithm enumerating the basic steps.

The sensitivity problem
By introducing a small perturbation on the

heat transfer coe±cient in the direct problem,
that is, h(r; t) ! h(r; t) + ¢h(r; t), a small per-
turbation on the temperature ¯eld is expected,
Tav(r; t) ! Tav(r; t) + ¢Tav (r;t). Substract-
ing from the resulting expression the direct
problem, Eqs.(5), and neglecting second order
terms, we have

@¢T (r;t)
@t

=
®
r
@
@r
¡
r
@¢T(r; t)

@r
¢

+
®
ak

(¡h(r;t)¢T (r; t)¡
¢h(r;t)(Tav(r; t)¡ Tinf ))

(6)

in 0 < r < R, for t > 0.

(@¢T=@r) = 0, at r = 0, t > 0

(@¢T =@r) = 0, at r = R , t > 0

¢T(r; 0) = 0 in 0 < r < R , for t = 0,

The adjoint problem and the gradient
equation

The inverse problem is solved as an optimi-
sation problem where we search for the solution
h(r; t) that minimises the functional

J ´ J (h(r; t)) =

tfZ

0

MX

m=1

(Tav(rm; t) ¡ Y (t))2dt;
(7)

where Tav (rm; t) and Y (t) are the computed
and measured temperatures, m = 1; 2; :::;M ,
M being the number of sensors, and [0; tf ] is
the interval of time in which experimental data
were acquired.

The adjoint problem is developed by de¯n-
ing the Lagrangian
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tfZ

0
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¡ 1
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¸
rdrdt;

(8)

where ¸(r; t) is the adjoint function.
Using the same perturbation scheme as ap-

plied to the sensitivity problem and neglecting
second order terms, we obtain

¢J =

tfZ

0

2
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(Tav(rm; t) ¡ Y (t))¢Tav (rm; t)dt

+

tfZ

0
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0
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·
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r
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¡
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®
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¸
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(9)

The adjoint problem is obtained after some
manipulation
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³
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(10)

in 0 < r < R, for t > 0.

(@¸=@r) = 0, at r = 0, t > 0

(@¸=@r) = 0, at r = R, t > 0

¸ = 0 in 0 < r < R, for t = tf ,

The following integral term is left

¢J =

tfZ

0

Z R

0
¡¸(r; t)

ak
(Tav(r; t)¡ T1)¢hdt:

(11)

By the de¯nition of gradient, the following
relation holds

¢J =

tfZ

0

Z R

0
J 0
·
h(r; t)

¸
¢h dt (12)

A comparison of Eqs.(11) and (12) reveals
that the gradient of the functional, J 0(t), is
given by

J 0
·
h(r; t)

¸
= ¡¸(r; ; t)

ak
(Tav(r; t)¡ T1):

(13)

The conjugate gradient method of min-
imisation

The iterative procedure for the estimation
of the unknown heat transfer coe±cient h(r; t)
is given as

hn+1(r; t) = hn(r;t)¡ ¯nP n(r;t);
(14)

n=0,1,2,..., where the direction of descent
Pn (r; t) at step n is de¯ned as

Pn(r; t) = J
0n(r; t) + °nPn¡1(r; t);

(15)

with °0 = 0, and the conjugate coe±ent °n is
given by

°n =

tfR
0

RR
0

·
J
0n(r;t)

¸2

rdrdt

tfR
0

RR
0

·
J0n¡1(r; t)

¸2

rdrdt
: (16)

The step size ¯n is determined by minimis-
ing the functional J [h(r; t)] given by Eq.(5),
that is

@J (hn+1)
@¯n

= 0: (17)

We obtain therefore

¯n =

tfR
0

PM
i=1(Tav(rm ; t)¡ Y (t))¢T(rm ; t)dt

tfR
0

PM
i=1

·
¢T (rm; t)

¸2

dt
:

(18)

The stopping criterion
The discrepancy principle is used to estab-

lish the criterion for stopping the iterations in
the estimation of the heat transfer coe±cient,
as measurement errors are always present in
real applications. Let the standard deviation
¾ be the same for all measurements, that is

Tav(rm; zm; t)¡ Y (t) »= ¾: (19)

Introducing this result into Eq.(3), we have

²2 =

tfZ

0

MX

m=1

¾2dt = M¾2tf : (20)

The iterative procedure is interrupted when

J [h(r; t)] < ²2: (21)

The solution algorithm
We now summarize the solution algorithm

that implements the iterative procedure as fol-
lows:
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Step 1. Choose an initial guess h0(r; t), for ex-
ample h0(r; t) = constant;
Step 2. Solve the direct problem, Eqs.(1), to
obtain Tav(r; t);
Step 3. Solve the adjoint problem, Eqs.(10), to
obtain ¸(r; t);
Step 4. Compute the gradient, J 0(r; t), with
Eq.(13);
Step 5. Compute the conjugate coe±cient, °n ,
with Eq.(16);
Step 6. Compute the direction of descent,
Pn (r; t), with Eq.(15);
Step 7. Solve the sensitivity problem, Eqs.(6),
with the source term given by ¢h(r; t) =
Pn (r; t), to obtain ¢T (r; t);
Step 8. Compute the step size, ¯n, with
Eq.(19);
Step 9. Compute a new estimate, hn+1(r; t),
with Eq.(14);
Step 10. Interrupt the iterative procedure if
the stopping criterion, Eq.(20), is satis¯ed;
otherwise, go back to Step 2.

RESULTS AND DISCUSSION
A series of numerical simulations were car-

ried out to evaluate the accuracy of the pro-
posed inverse analysis for the estimation of
the time-varying heat transfer coe±cient in a
forced convective °ow from an impinging jet
over a heated circular plate.

The simulated transient temperature data,
Yn(tn), n = 1;2; :::; nt , were generatedby by
adding random errors to the temperature data
evaluated through the direct problem formula-
tion, Tn(tn),

Yn = Tn + ¾en; n = 1; 2; :::; nt ;

where ¾ is the standard deviation and en is
a normally distributed random error. For the
normally distributed error, there is a 99% prob-
ability for the value of en to lie in the range
¡2:576 < em < 2:576. In all test cases, 11
temperature points were used to generate nu-
merically the temperature data.

The e®ects of temperature error readings in
the computed temperature for the estimation
of space and time-wise varying heat transfer
coe±cients, was examined. Here, the square-
wave variation of the heat transfer coe±cient
has 0.1 second in duration. Di®erent values of
the standard deviation of the measurement er-
rors were used in the simulations. Values of

¾ = 0:01, 0.02 and 0.05 with respect to the
largest value of simulated temperature data
were used. The observation time tf was 5.0
seconds also.

In Figures 1 to 4 the estimated space-wise
varying heat transfer coe±cient is shown for
¾ = 0.0, 0.01, 0.02 and 0.05. In these Fig-
ures, estimates are given for t = 0:1, 0.3 and
0.5 tf . The solid lines represent the values
computed by the direct problem whereas the
dashed lines represent the estimated data. As
can be seen, the heat transfer coe±cients are
estimated quite well by the inverse solution for
the simulated data far away from the impinge-
ment region. Near to this point, however, the
inverse solution could not capture the correct
amplitude of the variation of the heat transfer
coe±cients.
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Figure 1: Space varying heat transfer
coe±cient.
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Figure 2: Space varying heat transfer
coe±cient.
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Figure 3: Space varying heat transfer
coe±cient.
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Figure 4: Space varying heat transfer
coe±cient.
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Figure 5: Time varying heat transfer
coe±cient.
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Figure 6: Time varying heat transfer
coe±cient.
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Figure 7: Time varying heat transfer
coe±cient.
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Figure 8: Time varying heat transfer
coe±cient.

In Figures 5 to 8, the estimated time-wise
varying heat transfer coe±cients are shown for
¾ = 0.0, 0.01, 0.02 and 0.05. The estimates
were obtained for one radial position, r = 0:5R.

Figures 1 and 5, show that the estimation
is just reasonable if no temperature measure-
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ment error exists, i.e., ¾ = 0:0. The estimation
for the space and time-varying heat transfer
coe±cients, is reasonably for ¾ = 0:0 and 0.01,
while for larger errors, ¾ = 0:02 and 0.05, the
estimation is too far from the data computed
by the direct numerical formulation.

CONCLUSION
We solved an inverse heat conduction prob-

lem for the estimation of the time-varying heat
transfer coe±cients as that encountered in the
probloem of a cold jet impinging onto a heated
surface. The reference data was obtained by a
numerical direct simulation of an existing ex-
perimental rig.

We have shown that the estimated heat
transfer coe±cients agree quite well with the
"exact" heat transfer coe±cients, for experi-
mental errors up to ¾ = 0:02. For values of ¾
smaller than 0.01 the heat transfer coe±cients
could be estimated quite reasonably. Other-
wise, the estimation disagrees from the "exact"
heat transfer coe±cient. The data acquisition
rate has no signi¯cant e®ect on the estimation
of the time-varying heat transfer coe±cient.

Therefore, heat transfer coe±cients for the
°ow over a heated plate can be accurately es-
timated by solving an one-dimensional inverse
heat conduction problem based on computed
temperature data on the top surface of the
plate. Please note that there are some phys-
ical limitations on the time scale of the heat
transfer coe±cient variation that can be accu-
rately estimated by the proposed inverse analy-
sis. Near the impingement region, r < 0.1, the
estimated heat transfer coe±cient di®ers con-
siderably from the "exact" distribution in all
cases. Thus, the inverse solution cannot cap-
ture the correct amplitude of the variation of
the heat transfer coe±cients.
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